Scalable Inference for Massive Data
نویسندگان
چکیده
منابع مشابه
A scalable bootstrap for massive data
The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets—which are increasingly prevalent— the computation of bootstrap-based quantities can be prohibitively demanding computationally. While variants such as subsampling and the m out of n bootstrap can be used in principle to reduce the cost of bootstrap computation...
متن کاملScalable Strategies for Computing with Massive Data
This paper presents two complementary statistical computing frameworks that address challenges in parallel processing and the analysis of massive data. First, the foreach package allows users of the R programming environment to define parallel loops that may be run sequentially on a single machine, in parallel on a symmetric multiprocessing (SMP) machine, or in cluster environments without plat...
متن کاملApproximated Bayesian Inference for Massive Streaming Data
Extracting meaningful information out of massive streaming data is a significant challenge due to the high dimensionality of the inference problem and limits on available computational power and memory. While Bayesian models often convey significant inferential advantages, standard computational algorithms relying on Markov chain Monte Carlo are infeasible to apply. This motivates online variat...
متن کاملScalable Splitting of Massive Data Streams
Scalable execution of continuous queries over massive data streams often requires splitting input streams into parallel sub-streams over which query operators are executed in parallel. Automatic stream splitting is in general very difficult, as the optimal parallelization may depend on application semantics. To enable application specific stream splitting, we introduce splitstream functions whe...
متن کاملScalable Bayesian Non-negative Tensor Factorization for Massive Count Data
We present a Bayesian non-negative tensor factorization model for count-valued tensor data, and develop scalable inference algorithms (both batch and online) for dealing with massive tensors. Our generative model can handle overdispersed counts as well as infer the rank of the decomposition. Moreover, leveraging a reparameterization of the Poisson distribution as a multinomial facilitates conju...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.03.051